269 research outputs found

    Airy wave packets accelerating in space-time

    Full text link
    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam -- such as an Airy beam -- whose peak normally undergoes a transverse displacement upon free-propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatio-temporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to `time-diffraction' manifested in self-acceleration observed in the propagating Airy wave-packet frame.Comment: 5 pages, 4 figure

    Interferometry-based modal analysis with finite aperture effects

    Full text link
    We analyze the effects of aperture finiteness on interferograms recorded to unveil the modal content of optical beams in arbitrary basis using generalized interferometry. We develop a scheme for modal reconstruction from interferometric measurements that accounts for the ensuing clipping effects. Clipping-cognizant reconstruction is shown to yield significant performance gains over traditional schemes that overlook such effects that do arise in practice. Our work can inspire further research on reconstruction schemes and algorithms that account for practical hardware limitations in a variety of contexts
    • …
    corecore